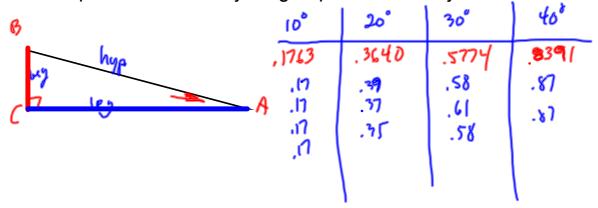


Investigation


Each draw a right triangle with the assigned angle measure ($\angle A$)

Make it big enough to easily measure the side lengths

Measure the legs as accurately as possible

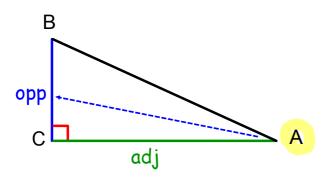
Calc the ratio $\frac{\text{leg opposite } \angle A^{\text{poposite }}}{\text{leg adjacent } \angle A^{\text{poposite }}}$ round to 2 decimal places

Compare the ratios in your group. Form a conjecture.

Defn: Tangent Ratio

The tangent of $\angle A$ is the ratio

of the length of the opposite leg

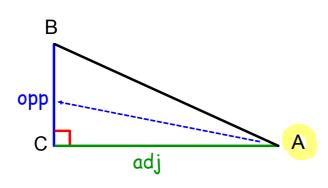

to the length of the adjacent leg.

Defn: Tangent Ratio

The tangent of $\angle A$ is the ratio

of the length of the opposite leg

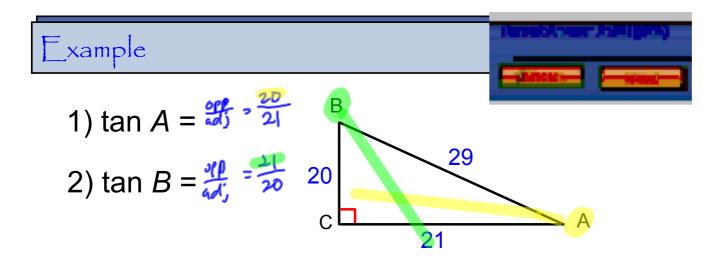
to the length of the adjacent leg.



Defn: Tangent Ratio

The tangent of $\angle A$ is the ratio

of the length of the opposite leg


to the length of the adjacent leg.

$$tan A = \frac{opp}{adj}$$

skip to next page for questio

What can you say about the tan of complimentary \angle 's?

What can you say about the tan of complimentary \angle 's? ...they are reciprocals.

What can you say about the tan of complimentary \angle 's? ...they are reciprocals.

What is (w/o using calc or table) tan 90°?

What can you say about the tan of complimentary \angle 's?

...they are reciprocals.

What is (w/o using calc or table) tan 90°?

...no such thing ... there is no opp leg.

$$tan 38^{\circ} = .5774 = t3$$

$$tan A = \frac{1}{3}$$

$$tan A = \frac{1}{3}$$

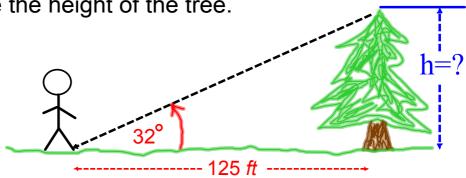
What can you say about the tan of complimentary \angle 's?

...they are reciprocals.

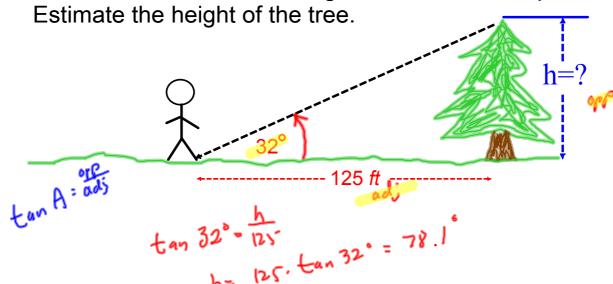
What is (w/o using calc or table) tan 90°?

...no such thing ... there is no opp leg.

Do pg 472, #1-3


- (1) ½ ; 2
- 2 3 ; 3
- (3) 1; 1

To measure the height of a tree, Alma walked 125 ft from the tree and measured a 32° \angle from ground to the tree top. Estimate the height of the tree.


To measure the height of a tree, Alma walked 125 ft from the tree and measured a 32° \angle from ground to the tree top. Estimate the height of the tree.

...draw yourself a picture...

To measure the height of a tree, Alma walked 125 ft from the tree and measured a 32° \angle from ground to the tree top. Estimate the height of the tree.

To measure the height of a tree, Alma walked 125 ft from the tree and measured a 32° \angle from ground to the tree top.

Practice

- (5) 12.3 tan $51^{\circ} = \frac{x}{10}$ or tan $39^{\circ} = \frac{10}{x}$ $\frac{x + 444 \cdot 39^{\circ} 10}{tan 39^{\circ}} = \frac{10}{tan 39^{\circ}}$ (b) 14.4 ten 64° = x 7
- 2.5 $t_{an} 23^{\circ} = \frac{x}{6} \text{ or } t_{an} 67^{\circ} = \frac{4}{7}$ (8) 1.6 $t_{an} 37^{\circ} = \frac{x}{2.1}$
- 21.4 tan 25° = 10 × = tan 25°

What if you knew the tangent ratio ...

...what angle produced it?

...in other words, the angle whose tan is x?

What if you knew the tangent ratio ...

...what angle produced it?

...in other words, the angle whose tan is x?

What if you knew the tangent ratio ...

...what angle produced it?

...in other words, the angle whose tan is x?

$$tan = \frac{opp}{adj}$$

What if you knew the tangent ratio ...

...what angle produced it?

...in other words, the angle whose tan is x?

$$\tan = \frac{\text{opp}}{\text{adj}} = \frac{\sqrt{3}}{1}$$

What if you knew the tangent ratio ...

...what angle produced it?

...in other words, the angle whose tan is x?

$$\tan = \frac{\text{opp}}{\text{adj}} = \frac{\sqrt{3}}{1} - \cdots + \sqrt{3}$$

What if you knew the tangent ratio ...

...what angle produced it?

...in other words, the angle whose tan is x?

$$\tan = \frac{\text{opp}}{\text{adj}} = \frac{\sqrt{3}}{1} - - + \sqrt{3}$$
Hey! A 30-60-90 \triangle !

What if you knew the tangent ratio ...

...what angle produced it?

...in other words, the angle whose tan is x?

$$\tan = \frac{\text{opp}}{\text{adj}} = \frac{\sqrt{3}}{1} \quad ---+ \sqrt{3}$$

Defn: Inverse tangent arctan

tan-1(x)

Let the measure of the angle whose tan is x.

tan-1(x)

 \rightarrow the measure of the angle whose tan is \mathcal{X} .

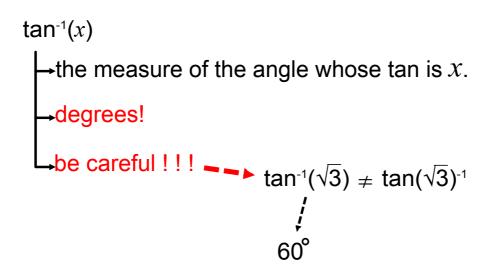
L→degrees!

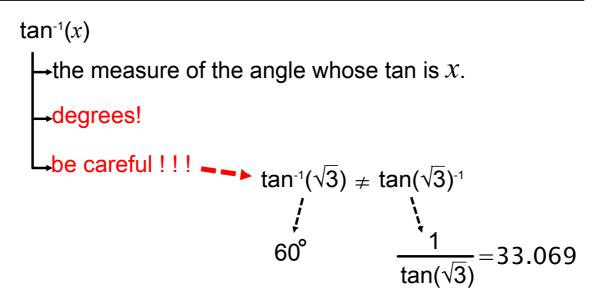
```
tan<sup>-1</sup>(x)

the measure of the angle whose tan is x.

degrees!

be careful!!!
```

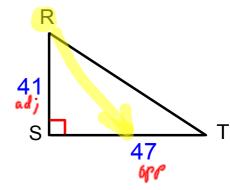

```
tan<sup>-1</sup>(x)


the measure of the angle whose tan is x.

degrees!

be careful!!!

tan<sup>-1</sup>(\sqrt{3}) \neq tan(\sqrt{3})<sup>-1</sup>
```

$$tan^{-1}(x) = tan^{-1}(\frac{opp}{adj})$$

$$tan^{-1}(x) = tan^{-1}(\frac{opp}{adj}) = m \mathcal{L}$$

 $tan^{-1}(\frac{opp}{adj})$ = the measure of the angle whose tan is $\frac{opp}{adj}$

Find $m \angle R$ to nearest 10^{th} of a degree.

1

Practice

Pg 473, #11-13

What does this sign mean?

What is the math term for steepness of a line?

What is the math term for steepness of a line? ...slope.

What is the math term for steepness of a line?
...slope.

How does slope relate to tan?

What is the math term for steepness of a line?
...slope.

How does slope relate to tan? ...it is the same!

What is the math term for steepness of a line?
...slope.

How does slope relate to tan? ...it is the same!

What is the measure of the **Z** the road makes w/the ground?

What is the math term for steepness of a line? ...slope.

How does slope relate to tan? ...it is the same!

What is the measure of the **Z** the road makes w/the ground? $18\% = \frac{18}{100}$

$$18\% = \frac{18}{100}$$

What is the math term for steepness of a line? ...slope.

How does slope relate to tan? ...it is the same!

What is the measure of the \angle the road makes w/the ground? $18\% = \frac{18}{100} = \text{slope} = \tan \angle$

$$18\% = \frac{18}{100} = \text{slope} = \tan 2$$

What is the math term for steepness of a line? ...slope.

How does slope relate to tan? ...it is the same!

What is the measure of the \angle the road makes w/the ground? $18\% = \frac{18}{100} = \text{slope} = \tan \angle$

$$18\% = \frac{18}{100} = \text{slope} = \tan \angle$$

$$\tan x = \frac{18}{100}$$
 so what is x ?

What is the math term for steepness of a line? ...slope.

How does slope relate to tan? ...it is the same!

What is the measure of the ${f Z}$

the road makes w/the ground?

$$18\% = \frac{18}{100} = \text{slope} = \tan 2$$

$$\tan x = \frac{18}{100} = \sin 2 = \tan 2$$

$$\tan x = \frac{18}{100} = \sin 2 = \tan 2$$

What is the math term for steepness of a line? ...slope.

How does slope relate to tan? ...it is the same!

What is the measure of the **Z**

the road makes w/the ground?

$$18\% = \frac{18}{100} = \text{slope} = \tan \angle$$

$$\tan x = \frac{18}{100} \text{ so what is } x ?$$

$$m\angle = \tan^{-1} \left(\frac{18}{100}\right) \approx 10.2^{\circ}$$

HW Problems

Pg 473, #1-22, 26-29, 31-43 odd, 53, 54

Pg 468, #1-11